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The aim of this exposition is to prepare a detailed algorithm that will achieve closed algebraic solutions for the equations of the types (4) and (7a) of the  revised PARTEC paper (2005). Geoscientists, engineers, and programmers form the target group of interested users. Consequently, an emphasis is placed on applications (real solutions). The usage of the algorithm(s) in producing numerical solutions is also exhibited. As noted in the PARTEC paper, both classes of equations are reducible to quartic (4th degree) polynomial equations, whose algebraic solutions have been known since the 15th century. A synopsis of these techniques, in modern terminology and notation, and which are used here, can be found in ([1]). Except for the original equations ((4) ; (7a)), the notation used in this addendum for variables and constants is meant to be independent of any that might also occur in the original paper.

Equation (4)

Consider first, the equation 
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of the PARTEC paper. You have already noticed the substitution 
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reduces (4) into the quartic equation
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Dividing both sides by K achieves a normalized form
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where
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Rewrite the normalized equation as
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and add 
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 to both sides, where the quantity y will soon be determined. The left-hand side can then be factored as a perfect square. Thus,
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Now assume the right-hand side of (14) is also a perfect square in x, i.e.
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where one can set
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with the signs 
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This is usually done by setting the sign of 
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 to be 
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 (principal square root) and adjusting the sign 
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 according to (17). The inclusion of complex roots is to be understood in this notation. 

Taking square roots on both sides of (15) yields
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There are 2 quadratic equations in x
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(19)

to be solved here, for which the quadratic formula can be used. All four solutions of (4) can be expressed in the forms
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It remains to show how y can be determined. It was assumed that the right-hand side of (14), which is a quadratic polynomial in x, was a perfect square. This can only occur when the discriminant vanishes, i.e. when
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which can be rewritten as
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Setting
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(23)

reduces the equation to a cubic in w,
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where the constants are easily seen to be
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The next substitution
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permits equation (23) to be rewritten as a cubic in 
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 but without a square term,
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where the constants
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are also readily verified. Substituting
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into (26) then yields
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(30)

which, by multiplying through by 
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The latter is easily seen to be a quadratic in 
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Using the quadratic formula, the solutions of (31) can be written in the form
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All solutions for (30) are then given by
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(34)

where complex roots are once again understood in this notation. 

Note that only even powers of  y appear in the computations for 
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and
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(36)

One first determines the sets of coefficients in the order
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and then works backwards
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(38)

to the original variable.

It should be noted at this point, that although (33) represents all six roots of (30), only one needs to be used, since all four solutions for x are given by (20), resp. (36). A basic knowledge of complex numbers is nonetheless essential, even when only real solutions are being sought, as the intermediary computations may be non-real.

For programming purposes, these results are summarized hierarchically in Tab. 1. The four solutions for x (36) are denoted 
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To illustrate these techniques, the aforementioned algorithm is tested on a few examples using a TI-89 graphing calculator (modes / formats: approximate / 12-place floating / complex rectangular).

Example 1.  Given the equation
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the algorithm yields the roots 
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Example 2.  More pertinent are those cases in which the coefficients 
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the above algorithm then yields as solutions
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Physical restraints on 
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 allow only positive real values for x to be considered, in this case 
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follows. A check shows 
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Greater accuracy, should it be desired, might be obtained by applying an iteration method for determining the zeros of functions. For example, using the value 
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 in (41) as the start for a standard Newton iteration applied to the equation (4), one finds that after the first iteration, namely
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all subsequent iterations yield the same value. Indeed, a quick computation confirms
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(44)

indicating an end to the degree of numerical accuracy obtainable on this machine.

Equation (7a)

The second equation under consideration
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(7a)

also reduces, as noted in the PARTEC paper, to the quartic form 
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(45)

through use of the substitution
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Bring (45) into its normalized form
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with
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The next substitution
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transforms (47) into
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where the coefficients
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Since (50) has the same form as (11), one can then proceed as in steps (13)-(38). These results are summarized in Tab. 2, where once again, the four solutions for x (50), resp. 
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Example 3.  Given the equation
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the algorithm yields the solutions 
[image: image79.wmf]{

}

11

1

,

2

,

3

i

±

-

, which are easily verified.

Final Remarks

The algorithm(s) show how to construct algebraic solutions to quartic equations of the types (10) and (45). No attempt is made however, to exhibit those solutions in a closed algebraic form in terms of the original coefficients L, M, N, C,  resp. P, R, S, C. There may be aesthetic considerations for the presentation of closed algebraic forms for the solutions, but their usefulness, as well as their necessity, as in the case of quartic equations, is often overstated. Moreover, the above algorithms can also be used in conjunction with modern computer algebraic software (e.g.,  Maple / Mathematica / etc.)  for those wishing to obtain a closed algebraic form in terms of the original coefficients. In those cases where the coefficients of (4), resp. (7a), are known in some fashion to be dependent of one another, further simplifications in the algebraic form of the final solutions can often be achieved. 

Tab. 1

	Eqn. (7a)
	
[image: image80.wmf]0

5

.

0

1

2

=

+

+

+

-

-

-

C

Mv

Lv

Kv



	Programming

Variables
	Value
	Remarks

	
[image: image81.wmf]C

M

L

K

,

,

,


	Read
	

	
[image: image82.wmf]g

m

l

,

,


	
[image: image83.wmf]K

C

K

M

K

L

=

=

=

:

;

:

;

:

g

m

l


	

	
[image: image84.wmf]e

b

a

,

,


	
[image: image85.wmf]8

4

:

;

:

;

2

:

2

m

lg

g

l

-

=

-

=

-

=

e

b

a


	

	
[image: image86.wmf]g

f

,


	
[image: image87.wmf]e

ab

a

g

a

b

f

+

-

=

-

=

3

1

27

2

:

;

3

1

:

3

2


	

	
[image: image88.wmf]z


	
[image: image89.wmf]3

3

2

3

2

2

:

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

±

-

=

f

g

g

z


	1. one usually chooses the sign + of the 
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	Applications: (real)
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	Applications: 
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Tab. 2                                                                                                                                                           

	Eqn. (4)
	
[image: image110.wmf]0

5

.

0

1

=

+

+

+

-

-

C

Sd

Rd

Pd



	Programming

Variables
	Value
	Remarks

	
[image: image111.wmf]C

S

R

P

,

,

,


	Read
	

	
[image: image112.wmf]3

2

1

,

,

a

a

a


	
[image: image113.wmf]R

P

a

R

C

a

R

S

a

=

=

=

:

;

:

;

:

3

2

1


	

	
[image: image114.wmf]g

m

l

,

,


	
[image: image115.wmf](

)

256

16

:

;

8

4

:

;

8

3

:

4

1

2

2

1

3

2

2

1

1

2

1

2

a

a

a

a

a

a

a

a

a

-

+

=

-

=

-

=

g

m

l


	

	
[image: image116.wmf]e

b

a

,

,


	
[image: image117.wmf]8

4

:

;

:

;

2

:

2

m

lg

g

l

-

=

-

=

-

=

e

b

a


	

	
[image: image118.wmf]g

f

,


	
[image: image119.wmf]e

ab

a

g

a

b

f

+

-

=

-

=

3

1

27

2

:

;

3

1

:

3

2


	

	
[image: image120.wmf]z


	
[image: image121.wmf]3

3

2

3

2

2

:

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

±

-

=

f

g

g

z


	1. one usually chooses the sign + of the 
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2. non-real (cube) root acceptable;
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	Applications: (real) 
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